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End Stress calculations on Elastic Cylinders

by P.J.D. Noyes and D.A. Spence

For a semi-infinite circular elastic cylinder z>O, r( deformed

solely by a distribution of stress. and displacements on its flat

end s=O, the Love stress function can be expanded in a series of

sigenfunctions of known form. For problems in which mixed stress

and displacements boundary conditions are prescribed on zw0 the

coefficients appearing in the expansion can be determined in an

explicit form via sets of biorthogonal functions. When normal and

shear stresses are prescribed on zzO no such closed expressions

for the coefficients exist and approximate methods usually lead to

Infinite systems of linear equations which are solved by

truncation. Stability of solution as the order of truncation Is

Increased can only be guaranteed theoretically when the Infinite

matrix is diagonally dominated, and this Is not the case for

existing methods. A Galerkin method has been developed using

weighting functions chosen so as to optimise the diagonal

dominance of the infinite mitrix, and numerical results show that

although the resulting matrix Is not completely diagonally

dominated, the resulting coefficients show an improvement In

stability, and accurate solutions can be obtained using smaller

matrices thus producing a much more efficient method of solution.

Calculations are presented numerically and graphically for

representitivo distributions for three classes of data-

(I) Smooth continuous data

(ii) Smooth data violating compatibility at r-l

(iII) Data containing discontinuities
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End Stress Calculations on Elastic Cylinders

by P.J.D. Mayon and D.A. Spence

1. Introduction

The Love stress function *(r,z) in an elastic cylinder z0

rl subjected to homogeneous boundary conditions on the curved

boundary r=l can be expressed as an eigenfunction expansion of the

form

ECnex n Z#*(r;k n) (1.1)

where Xn is an eigenvalue determined from the conditions on ral.

For the case of a traction-free curved face, Xn is a root of

k 42k J1 ()) = 2(1-V)J 0X) (1.2)

Little and Childs [1967] have given a construction for determining
the coefficients c in the expansion (1.1) for cases in which the

n

data on the flat end z=O takes the form of prescribed values of

either of the pairs

r a and u ror (1. 3)

Orz and u z

For these "canonical" problems the (c.) are found explicitly as

quadratures of the data with appropriate biorthogonal functions

derived from the (Erin)•

-- L



In the present report we consider the problem of determining

the coefficients when a and qru are prescribed. It is known that

no explicit solution exists for this case, and the (c n ) must be

found by approximate methods leading in general to infinite

matrices which can only be inverted in truncated form.

This problem has already been studied extensively for the

elastic strip, x>0, IyI<1. Spence [1978] introduced a set of

weighting functions derived from members of the family of

biorthogonal functions, which in the case of the tra n

Prb for the strip, namely

O a defined on x=0

lead to a diagonally dominated system of equations

EAcn d (1.)
n

where A = I - G, with the row sum norm IGO < 1. For such a system, I
the solution c(N) nay, of the truncated system

EA(N)c(N) n (N) (1.5)
111 8n n m

n

is known to converge to the solution ol the full system as N

and this was borne out for the cases tested, in which it was found

that changing the order of truncation N did not lead to changes in

the coefficients. This was not found to be the case with other

published methods that were tested.

-2-



2. The Now Formulation

The construction given by Little and Childs [1967] for

obtaining biorthogonal functions for the two canonical end

problems for the elastic cylinder, thus enabling them to obtain

the coefficients appearing in (1.1) explicitly, has not proved to

be the most suitable for the present studies. The main disadvatage

is that for the stress problem it in not possible to "optimise"

the weighting functions, thus improving the diagonal dominance of

the infinite matrix arising in this problem. Consequently we

choose a different but equivalent set of four stress- and

displacement-related variables which will be prescribed on zo0.

In terms of the biharmonic "Love" stress function (Love

(1927], Art.18e) the stresses and displacements are given by

arr 2 a20'' a- (I-)2 a. (2.1,2)

= 2e 2- 2 (2.3,4)

a 1f(2-V (V - 0

2 8202I9ur = r8 2JLu. 2(1-i')Va* (2.5,6)

where v is Poisson's ratio and

2 1 8 a2 2 a212=7 i"r-gr + "z + (".s

If the cylinder Is subjected to stress-free side conditions on ral

and a self-equilibrating distribution of stresses and

displacements on s-o then 0 may be expanded as an eigenfunction

-3-



expansion

0(r,z) : Ecmo(rskm)e -a 1  (2.6)
Im

where X. Is a root of

2 2

+-) 0 0, (2.9)

= 12(1-V)J1 .)l+Je 00]i )Jelr) 4 ki lk)rJ 0lr) (2.10)

and the correct Interpretation of the summation (2.6) Is obtained

by numbering the roots of (2.9) in the right half-plane so that

k-n = kn [see figure 1] and writing the expansion more precisely

as

m=in

*(r,z) = E'.*C(r;k,) a (2.11)

where the prime means that the term with m-O does not appear In

the sumation. This implies that the normal stress distribution Is

equilibrated. i.e. 1 ro (ro)dr = 0.

The present choice of prescribed functions together with

(a)their expansions in terms of the -derived- functions * (r) are

given by

f~x (r) aos.ar 41 Wr

f" (r) .1(1.2V)ir ,e + awszsz % c, r
141 8 2- s (4)

f ra 8 ()

(2. ia)

."4



This can be seen to be equivalent to prescribing the unmodified

stresses and displacements as in Little and Childs - for exampl*,

if a., and ur  are known on z=O, then so are f(1) and f(3) as

defined above.

In terms of *(r;k) the derived functions (a are given by

(2) d 2 2 2 d#(.14
*m  Cr) = -*{2-)s + (1-,)) . r (2.13)

m mr) : - dr•

* (d 2 2 d2d#
X()) = (l V)drD # + 'dar) (2.15)

*( 2r (l2~ d+ (2.16)

and explicit expressions for these functions in terms of Bessel

functions are

(1) 1 )'Jj(k )rJO(k r) + [2J j (k)]J (kr))

(2.17)

(r) a ()rJ (k r) + J (km)J ( r)) (2.18)

.0. 3 (r) a 41-Xm ), m)rjo(), r) + [2VJ (k )+k Jo(k )] rs(Xmr) )
* M m e M a m m

(2.19)

#M (r) - ( kr (2.20)

A -U--(m j()m ) 2 ;O



3. DertVation of Diorthoaonal Functions

*(rok) is a solution of the reduced biharmonic equation

id d 22
r ]-r-- + ) 0, (3.1)

and as in Spence [1978] this equation may be expressed as a matrix

differential equation in either-*'" and- or * and *(43(t)

For the (1,3)-canonical problem the matrix equation

.1 toj;2 (14Y))Li2a'"3: (3.2)
-[1 2_ (2+ 13_ ,] ,, 11 , 3l ,, in.(3

can readily be shown using (2.13,15) to reduce to

d 2 2
Uf a .'} = 0 (3.3)

(13
The condition Orz 0 on r=1 may be written in terms of * and

3 as

11 (1) - 3 )(1) = 0 (3.4)

The corresponding boundary condition for Orr is

((-v)* ( +12(#("1 (1) + (1) Z 0 (3.S)mm

Ct) This Is another advantage of the present formulation. The

Little and Childs derived functions do not appear to be the
solutions of any underlying matrix differential equation.



where D a d/dr. The derivatives of d contain the

fourth derivatives of *. and in obtaining (3.5) it has been

necessary to use the reduced biharmonic equation (3.1) evaluated

at r=l to express the Orr condition in the required form.

(1) (3)As in Spence (1976] the function vn and Fn which are

111 13)
biorthogonal to and 4 are obtained as the eigenfunctions

of the differential operator adjoint to (3.2) which are

constructed(t) as follows:-

Using the differential equation (3.2) we may write

(1+[(0) 2( (1JX) ()".rdrj

( + 123) ) (3) 931

= VB2 ({]4P .. ?*)~~ +*B2 M() l

= ~ ~ ((r~J()*[ 2l(),1

+ [B-R 2 I]' - (2+) = ()

we may now integrate twice by parts, transferring the

2 (a)B derivatives onto the inr and Introducing boundary conditions

at r=l:-

(t) The construction of biorthogonal functions for the

(2,4)-problem is a modification of the work of Klem (1970], who
treated the full non-axlsymmetric end loading problem. Putting
@no, 8/8a0 in his construction gives the bLorthogonality given
here. However, his construction for the (1,3)-problem does not
lead to a pure biorthogonality from which the coefficients can be
determined explicitly, and the constr%vtion described below is
new.



1- 1 (.()(2..Ivn13j) (2+V)(IS) (a a- 12 1 v" 3 )

6 rIDM~)-4~)1)nlj~ +Iv'fL) On - Om" On") ral

r3) pn3)' ]rf 3) 6~3) _#(3 )6~3)1r=

[In ) 61),L - ~ 6 -It) (2v If'I

!If ,3 a (Vp , p(3)T is an &Igenfuriction of the adjoint

differential equation

11R I -; (14+V (3.6)
[S A j: (24 (18211 " )1

then usIng the boundary conditiLons (3.4,5) we may write

(1) #6,2)

4 (lP)*(2) lvin( 1 ) + 2 (14P)DVn3 (1) + v (2v) V()j

1 3)r (1) I) (37+ a(14I)D~m (l)1-vn (1) n (10)j(37

Thus If IL,3 satisfies the adjoint boundary conditions

61)1

-VV, (1) + 2(14V)DV' (1) + P(2+v)V (1) a0, (3.9)

Y or more compactly



o"  (1) .: (1) = o, (3.10)

we find

k) k3) 2 (3.12)(lV]m- nr -m

and hence

1) + (m vn = 0 for mon. (3.13)

Exactly the same construction may be used for the

(2,4)-canonical problem. This time the required matrix

differential equation is

2-121 W- (4)[ 21 12)

with corresponding boundary conditions

(21 (1) = o (3.15)
m

(1+V)D * 1 2 ) (1) = D1 4 )  .)4)

-m (1) + vm ().

and the adjoint equation and boundary conditions are

12 1 f' 2 1(23'IrZJ I I
[ -B] -0 2,1 1-n]

- - (3.1



(1+V)D n( 4 (1) = D ( 2 ) (1) + vv( 2 ) ()(3.1)

V1, (1) = 0 (3.19)

resulting in the biorthogonality

<2)(2) (4, (4)>
2) +(2 ( 4 = 0 for men. (3.20)

In terms of the Beosel functions the two biorthogonal vectors are

given by

[n; (r) n (k )rJ, (knr)+(2vj (),n)+I Jn (k ))J 1 (knr)

(3.21)I ~(2 2(1+V)J1 (kn)j l.ftr)
(= Ba (3.22)

V (r) n , ( r * -,

where

1

ft 2(1+V) 2n2 J 1 2(1 )Plk (3.23)

= 1((+VlXJ2( j n ) p (
n  (3.24)

a 212

fn n - knl) + 2(2-VlXn ol),n)J n) - 2(1-VlJrI(fn) (3.25)

and the normalisIng factor P(Xn) has bees introduced so that

(.,m"v") ,1 ()36Yn + 4 r n 6 X0O (3.2t6)

- 10 -



2* *4) ,,)) 3.27

It Is interesting to note that as in Spence [1979] this

formulation exhibits what might be called a 'self-biorthogonality"

where

A -2V £ + (I-V)On.

43 = - - - I I3) (3 .2 0 )

and

Vn2 M 4- (32n
4  2(1+V)), 3 2(1+V), I (3.29)

by contrast, in the formulation of Little and Child*, the

(1,3)-biorthogonal functions are given in terms of the

(2,4)-derived functions and vice versa.

- - 11 -



4. OotiMal Velahtina Functions

In this section we consider the stress problem In which

r(Ozz) zzo ()

and (4.1)

(Orz)z__ a f2) (r)

are prescribed functions of r. This does not fall into the class

of canonical end problems categorlsed In Section 1. As was done

for the strip problem, we now seek weighting functions of the form

(1) A. C1) (3) (4.2)i

12) 2 21 2 14)
as CX, ; + Um; (4.3)

where A, 3, C and D are constants to be determined. (The choice

A = -2v, a = (1-Y), C a 0, D a -(1+V) would produce the

(1) (2)
biorthogonal functions r ' defined in Section 3, but as

will be seen these are not optimal for the non-canonical problem].

An infinite net of linear equations for the coefficients

c in the derived expansions
n

f(1 C 1 (4.4)

f2) (2) (4.5)

is obtained by combining the scalar products of (4.4) with

and (4.5) with Xm2 for each n. This yields the set

- 12 -
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FAac n = dm  (4.6)
n

where

A = ILm (n Xm  2 (4.7)

and

d - 4 X'f 3 f + ) (4.8)

We now choose the constants A, 3, C and D so an to make the

off-diagonal elements of the matrix A a small as possible In

absolute value compared with the diagonal elements. For this

purpose the scalar products

L)m.(L) IL (4 - 3)a )( and 1(2) 43) (4.9)

have been calculated and are listed in Appendix A. The expressions

are cumbersome, but the salient feature is that the first three
2 2 -3

contain the factor (k -), ) . As was noted by Spence for the stripE n

problem, the presence of any negative power of (XM -k n ) in the

matrix A leads to divergent row sum norms. The four constants A,

3, C and D provide just sufficient freedom to suppress all such

factors in the denominator.

The procedure for determining the optimal choice for the

constants A,B,C and D given the choice of weighting functions

(4.2,3) involves taking the matrix elements (4.7) with XU and

(21
given by (4.2,3), and dividing out the unwanted factors

1)-l giving three equations for the four constants.( A~m - n

i 2is



Using the quadrature. given in Appendix a the general. matrix

element A Is

A=A(# f3 1) ) 4 . n . .11+C c(#, 23 1,(2)) (2 .

4) 3 J 3 )J g )xm n I m 1 n

4 2-(1) )(ki aJgkn -i kn)mnj(m)j()n))J1)7X

+ 1 

322 3 1
+ 28(1P)~k aJiI(),I ft )) ()7l(LI) (k )'I-U(J14v))*) 5  I kn

+ ~ 33

we halr to1 eliminate theX ()h- () -1 ro th(dmnattem

whc one a) cm m n en i tr a n be IN nItten

mxn a a~' ()I I~ (CD+)) -I n ( 1 *

3 (2~ 2

n L ILMIi in a -a14-+~ko



+ -(A+13V) X.4(C-D (141))OX

3 2 21 3j
+ (3A-2B+BV) XmIn+ (C (+) v) X M ( n)

The condition that both factors multiplying the Bee]. functions

have a factor Xm-Xn Is the same, namely

A - B + C a 0, (4.10)

and if this condition is satisfied the dominant term becomes

4 m4 n) (k)m)k () i( [CD3+))"-2+B++z~) ')
4 mnJ 1X 1' n' I' a'M a'I n 1  m m an

-(2A+PBV)k 2)n+ *(A3+BV)k X3(A+BV)L4

+) , ) ())(A+Bv),4 (34-B+nV+C.0D(J.+V))k X (C+D(.+V))]
m 0 1 in - INa U nb~J

Again the condition that both terms Inside the square bracket*

have the factor .- sn IS the samet

A + 9Y + D(l+V) a 0 (4.11)

giving a dominant term

-4X 4 k n 1 (k)7 (k)' ()3 (k.)[(2+a V-.C+D (3L+V))k.
a n I £ a n M 0 n

(km+ ,n) 3 ()= .),n)

- (2k+29mV) 2-+)

-t -1I5 -

- 4 _ _

;i



The last relation suppressing all factors (km - Xn ) 1n the

denominator in

A + 8V - C - D(L+V) = 0 (4.12)

giving as the dominant term

4(A4DV)k. )7 (k )i () )(3' 3)3LR+),)J (k )i (k + 2 J 1. 1. )
m* n 1 m I n''mmn n I Is0n~ ms a.

(km+ In) a-

The three equations (4.10,11,12) lead to the values

A = -(1-2v); 3 = -3; C - -2(1+V) D = 1. (4.13)

The resulting weighting functions are thus

2(1+V) x i (kJ *r *(k r) - (J7 (k )+IX J7 (L )I'7 (k

(4.1]4)

=I 2(1+V)),. m I (X)Vi(Xr - a'1 X)X'.X)'iX)

(4.15)

and the matrix elements are

A n

a a In' a naam) ( n m) (In

3]

* ng



4 IV2 k 4X 31 a(k )J 2 0 ~ (3)L +)L

(+n)2 (4.16)

Am =2 (I+ V ) A))7 ( 1) 2 IL *) f2V ( ) + k A (4.17)

In order to see why this choice of coefficients Should give

rise to a more stable matrix, it is of interest to determine the

asymptotic form of the matrix elements. These are determined by

using the asymptotic form for the eigenvaluos

mn + -ilog(4mw) (4.18)

so that we simply replace k M by mw to first order in the matrix

elements (4.16,17). Using the asymptotic forms of the Bessel

functions given, for example, in Abramovitch and Stegun, it can be

shown that the Bessel functions of the oigenvalues, namely J (k)

and J l )" have the asymptotic form

J (l ) M (- (n +1)- ,7( m  (-1.)n' 0 1( - 1?.  (4.9)

Thus the matrix elements have the asymptotic form

A -16(1411)i, 6 m4n4  m23mf)

amf (men)y

for Xm In the first quadrant, and

A -- 16(1+1')s A~ m4n 4 T 12M~.f
am (M n)

for XI in the fourth quadrant, with

-17-
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if the factors (km-kn)- had not been elLminated, then the roy

suaw would grow with m, for exactly the same reasons as given in

Spence (1978] for the strip problem.

- is -



5. Details of the Numerical Results

In order to test the optimal weighting functions derived in

section 4 and compare them with unmodified biorthogonal weighting

functions the following saVple stress distributions were

considered

Case I Oaz , - 2ra

or s = 0

Imooth continuous data

on. za = 0

rz = r - r

Case 3 - 3r /7 (0r<t)

~A~sz 0£ 1/7 (r1

Orz =0

Case 4 az = 0

Or) Data containing4 2
°rz r - r 13 (2Iri) discontinuities

Case 5 { 3 (0r<!)
azz 11 (I<r(1)

Orz = 0

cae 6 O£ = 0 1Incompatible with edge conditions

Or1 = r

, !9



in order that the stresses should decay as z- the normal

stress must be self-equilibrated. All the distributions tested

satisfy this condition. For non-self-equillbrated distributions a

simple polynomial term can be added to a stress function

representing an equilibrated distribution. In addition to this

condition on the normal stress, the shear stress, as well as

vanishing at the origin, must also be zero at r=l if the end

distribution is to be compatible with the zero stress condition on

r= 1.

The first two cases satisfy the conditions of equilibration

and compatibility and are continuous. Cases 3 and 4 have simple

jump discontinuities in the first derivative of the prescribed

stresses, Case 5 is equilibrated but discontinuous, and case 6 Is

Incompatible with the side conditions on the shear stress.

It is only possible to find closed forms for integrals of the

form

tk10kn t)dt [t k I(X n t)dt
°0 Jo 1

when k is even for the J integrals and k is odd for the JS I

integrals. Therefore the prescribed normal stress distribution may

only contain even powers of r and the shear stress distribution

odd powers, if the right-hand sides of the truncated systems are

to be evaluated in closed form. Using integratlon by parts the

other integrals may be reduced to

J:0 (X t)dt

- 20 -
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which could be evaluated numerically. However the real and

imaginary parts of J* (knt) become more oscillatory as n increases,

which presents problems for library integration subroutines.

Although a general program for solving the end stress problem

would need to include the possibility of general polynomiLl stress

distributions, for the purposes of this report it was decided that

sufficient test could be devised with the above restrictions.

Three salient features of the numerical results presented in

appendices C and D are worthy of note, showing the advantages

offered by Optimal Weighting functions. These are

(i) The Improvement in diagonal dominance of the truncated

matrices.

(ei) The increase in stability of the earlier coefficients as

the order of truncation Is increased.

(iii) Improved convergence to the data for various orders of

truncation.

The improvement in diagonal dominance of the truncated

matrices can be seen in appendix C. Not only are the row sum norms

less for Optimal Weighting Functions than for Unmodified

Biorthogonal Weighting functions, but they are decreasing with the

row index, and they are less subject to the effects of truncation.

As an example of the increased stability in the early

coefficients, the first two coefficients for all the orders of

truncation shown in Appendix D for Ozz l-2r Orz 0 are
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C C1 
2

N=5 -0.11902E-1 0.11986E-1 0.34817E-3 -0.16901E-3

N=10 -0.16985E-1 0.14775E-1 0.472153-4 -0.252403-3

N=20 -0.16622E-1 0.14578E-1 0.66895E-4 -0.246153-3

N=50 -0.16582E-1 0.14556E-1 0.69037E-4 -0.245463-3

N=100 -0,16566E-1 0.14547E-1 0.699043-4 -0.24519E-3

for Unmodified Biorthogonal Weighting Functions, and

c c
1 2

N=5 -0.16470E-1 0.14509E-1 0.75161E-3 -0.24251E-3
N=10 -0.16588E-1 0,14566E-1 0.68057E-4 -0.24554Z-3

N=20 -0.16572E-1 0.14549E-1 0.692703-4 -0.24531E-3

N=50 -0.16559E-1 0.14543E-1 0.70286E-4 -0.24505E-3

N=100 -0.16557E-1 0.14542E-1 0.70409E-4 -0.245023-3

for Optimal Weighting functions. The corresponding coefficients

for the incompatible distribution az* = 0. arz = r, which presents

a much more severe test of convergence and stability, are

c c1 2

N=5 -0.10644E+0 0.67713E-1 -0.68485E-2 -0.14244E-2
N10 -0.31706E-1 0.26662E-1 -0.23732E-2 -0.20219E-3
N=20 -0.11429E-1 0.15645E-1 -0.128323-2 0.14839E-3
N=50 0.93730E-2 0.489573-2 -0.22527E-3 0.49061E-3
N=100 0.54865E-1 -0.203503-1 0.22660E-2 0.128743-2

for Unmodified biorthogonal weighting functions and

c c1 2

Nag 0.278443-1 -0.640303-2 0.632633-3 0.82867-3

N=10 0.296023-1 -0.725163-2 0.77091E-3 0.850793-3
N=20 0.310943-1 -0.79309E-2 0.9376E-3 0.374953-3

N=50 0.326313-1 -0.36280-2 0.999253-3 0.90250Z-3
N=100 0.33516E-1 -0.902513-2 0.1064=3-2 0.918603-3
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for Optimal weighting functions. The Increase In stability for the

smooth first distribution Is marked, and for the Incompatible case

O.W.F. coefficients are still reasonably stable, whereas the

U.B.W.F. coefficients lose all stability.

The third advantage can be seen In the improvement In

accuracy of the summed expansions tested against the prescribed

stresses on z=O. Although the difference is only slight for the

well-behaved distribution l-2r, U.B.W.F. completely fail to

converge to the incompatible shear stress, whereas the O.W.F.

produce reasonably good results when the Cesaro sums are

calculated rather than partial sums, as shown by the graphs In

appendix F.

-23-



AppendIx A

Eiaenfunction Ouadratures

In this appendix we give explicit expressions for the oigenfunction

quadratures of the form (*.'a' required in the construction of

the matrix discussed in section 4 of this report.

(mn)

m in I a I n X 2-k 2 m n M a n n h a 9

m 1nma m an n ' n

+ 1X 2 ~~~~ ( )+ )J Ol Oi)()l
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m nn
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Appendix a

Right-hand d for Infin itl4 vtm

This appendix lists explicit expressions for the right-hand sides

d m  corresponding to the six special cases of section 5, obtained

from optimal weighting functions.

Jo*f (m,R.-2(2..J 1 0))

dm  4 (1+v)),m J (kin ) (3X'lr (X. ) +12XmJ70 ( k ]m ) -8 (4+V)J I7 (k m ) )}do -6(1+v) 1[,j ) 2a(
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Appendix C

Tables of Row Sum Norms

This appendix lists the row sum norms

n

for various orders of truncation (by the order of truncation we
mean the number of pairs of eigenvalues used in truncating the
matrix. Thus N=10 means that a 20x20 matrix has been Inverted). it
should be noted that although the norms for the Optimal weighting
functions are not less than one, they decrease with n. (ignoring
the effects of truncation for n at either end of the range) unlike
those for the unmodified blorthogonal weighting functions, and the
improvement this affords is demonstrated by the results in the
next appendix.

Biorthogonal Weighting Optimal Weighting
Functions Functions

n N = 5 N = 5

1 3.60230 1.71249
2 3.36248 2.11606
3 3.51319 1.99470
4 3.29536 1.83499
5 2.16175 1.68600

N = 10 N = 10

1 5.61611 2.34593
2 4.11965 2.98797
3 4.22286 2.77801
4 4.46599 2.61097
5 4.68817 2.44794
6 4.86089 2.29953
7 4.95964 2.16658
a 4.90947 2.04769
9 4.50296 1.94108
10 3.12490 1.84507
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N = 20 N a 20

1 9.59345 3.00200

2 5.47667 3.6923

3 4.91307 3.60346

4 4.90790 3.44066
5 5. 07706 3.27596
6 5.3075 3.12280
7 5.56248 2.98317

8 5.81666 2.05629

9 6,06626 2.74077

10 6.30916 2.563512

11 6 .54364 2.4532

12 6.76732 2.44695

13 6.97645 2.36631

14 7.16500 2.28956

15 7.32200 2.21508

16 7.42656 2.151289

17 7.43424 2.02967

18 7.24075 1.97

19 6.57820 1.97450

20 4.77745 1•92225

N 50 N = 50

2 9.55000 4.77807

4 6.15013 4.56976

6 5,87586 4.25654
8 6. 15164 3. 98821

10 6.58065 3.76176

12 7.05966 3.5602

14 7.55387 3.39950

16 8.04895 3.25095
19 6•5 3647 3.11617

is 8.36472.99860
20 9.01408 2.99994

22 9.48194 2.88994

24 9.94036 2.79052

26 10.38957 
2.69903

28 10.82965 2.61440

30 11.26041 2.53576

32 11.68129 2.46245

34 12.09109 2.39383

36 12.49757 2.32943

39 12.86643 2.26881

40 13.21917 2. 21161

42 13.52738 2.15753

44 13.74547 
2.10629"3

46 13.73585 2.05763
48 12.95004 2.01136

50 8.77780 1.96730
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N = 100 N a 100

4 8.23533 5.43116
8 6.70562 4.85933
12 7.30349 4.43930
16 8.18078 4.11988
20 9.10390 3.86388
24 10.02212 3.65091
28 10.92245 3.46894
32 11.80173 3.31037
36 12.65852 3.17007
40 13.49438 3.04447
44 14.31146 2.93093
48 15.11152 2.82748
52 15.89599 2.73260
56 16.66597 2.64509
60 17.42227 2.56399
64 18.16532 2.48851
68 18.89513 2.41800
72 19.61101 2.35193
76 20.31100 2.28983
80 20.99060 2.23130
84 21.63895 2.17603
88 22.22654 2.12370
92 22.64989 2.07408
96 22.32804 2.02692

100 14.21699 1.98204
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Appendix D

Coefficient. and Sumewed Expansions

Convergence to zz 1-.r 2  orz 0

Biorthogonal Weighting Optimal Weighting
Functions Functions

n N = 5 N = 5

1 -0.11902E-1 0.11986E-i -0.16469E-i 0.14509E-i
2 0.34817E-3 -0.16901E-3 0.75162E-4 -0.24251E-3
3 0.98271E-4 0.22602E-4 0.32191E-4 -0.10014E-4
4 0.22726E-4 0.232303-4 0.76576E-5 0.13609E-5
5 -0.10792E-4 0.39199E-4 0.21059E-5 0.112273-5

r Normal Stresm Shear Stress

°zz UDWF OW" Orz UBWF Owr

0.0 1.00 0.8283 1.0243 0.00 0.0000 0.0000
0.1 0.98 0.8834 0.9830 0.00 -0.1076 0.0183
0.2 0.92 0.8936 0.9070 0.00 -0.0177 -0.0036
0.3 0.82 0.7422 0.8277 0.00 0.0817 -0.0121
0.4 0.68 0.5895 0.6882 0.00 0.0376 0.0130
0.5 0.50 0.4723 0.4941 0.00 0.0017 0.0087
0.6 0.28 0.2426 0.2781 0.00 0.0414 -0.0180
0.7 0.02 -0.0451 0.0386 0.00 0.0621 0.0007
0.8 -0.28 -0.2866 -0.2892 0.00 0.0896 0.0228
0.9 -0.62 -0.5559 -0.6262 0.00 0.0965 -0.0051
1.0 -1.00 -0.7252 -1.0034 0.00 0.0000 0.0000

NOTE

UBWF - Unmodified Biorthogonal Weighting Functions

OW? - Optimal Weighting Functions
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Biorthogonal Weighting Optimal Weighting
Functions Functions

N = 10 N = 10

1 -0.16985E-1 0.14775E-1 -0.16588E-1 0.14556E-1
2 0.47215E-4 -0.25240E-3 0.680583-4 -0.24554E-3
3 0.27679E-4 -0.13361E-4 0.30973E-4 -0.11049E-4
4 0.65262E-5 0.67046E-7 0.73391E-5 0.95283E-6
5 0.17761E-5 0.52755E-6 0.20022E-5 0.93628E-6
6 0.59203E-6 0.27933E-6 0.62190E-6 0.49396E-6
7 0.27527E-6 0.13832,-6 0.21096E-6 0.24802E-6
8 0.19793E-6 0.11598M-6 0.74706E-7 0.12711E-6
9 0.12656E-6 0.196003-6 0.260093-7 0.67366E-7
10 -0.96880E-7 0.13266E-7 0.78339E-8 0.36903E-7

r Normal Stress Shear Stress

azz UBWF OWr z UBVF OW

0.0 1.00 1.0173 0.9794 0.00 0.0000 0.0000
0.1 0.98 0.9825 0.9880 0.00 0.0032 -0.0038
0.2 0.92 0.9298 0.9135 0.00 -0.0032 0.0012
0.3 0.82 0.8237 0.8264 0.00 -0.0013 0.0002
0.4 0.68 0.6874 0-.6744 0.00 -0.0027 -0.0019
0.5 0.50 0.5047 0.5056 0.00 -0.0038 0.0029
0.6 0.28 0.2839 0.2754 0.00 -0.0043 -0.0050
0.7 0.02 0.0241 0.0239 0.00 -0.0045 0.0058
0.8 -0.28 -0.2805 -0.2817 0.00 -0.0083 -0.0081
0.9 -0.62 -0.6254 -0.6213 0.00 -0.0049 0.0072
1.0 -1.00 -1.0257 -0.9990 0.00 0.0000 0.0000

i
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BDorthogonal Weighting Optimal Weighting
Functions Functions

N = 20 N = 20

1 -0.16622E-1 0.14578E-1 -0.16572E-1 0.14549E-1
2 0.66895E-4 -0.24615E-3 0.69270E-4 -0.24531E-3
3 0.30920E-4 -0.11202E-4 0.31251E-4 -0.10945E-4
4 0.73657E-5 0.91154E-6 0.74367E-5 0.99956E-6
5 0.20277E-5 0.92480E-6 0.20454E-5 0.96002E-6
6 0.64032E-6 0.49145E-6 0.64404E-6 0.50723E-6
7 0.22392E-6 0.24839E-6 0.22349E-6 0.2560OE-6
8 0.84011E-7 0.12839E-6 0.82323E-7 0.13220E-6
9 0.32906E-7 0.68881E-7 0.30901E-7 0.70754E-7
10 0.13125E-7 0.38454E-7 0.11116E-7 0.39245E-7
11 0.52022E-8 0.22364E-7 0.32949E-8 0.22481E-7
12 0.19950E-8 0.13609E-7 0.23007E-9 0.13241E-7
13 0.69736E-9 0.87645E-8 -0.88613E-9 0.79837E-8
14 0.12389E-9 0.60958E-8 -0.11986E-8 0.49067E-8
15 -0.30167E-9 0.46801E-8 -0.11890E-8 0.30610E-8
16 -0.97063E-9 0.39408E-8 -0.10627E-8 0.19300E-8
17 -0.22738E-9 0.32481E-S -0.90673E-9 0.12244E-8
18 -0.43301E-8 0.12425E-8 -0.75622E-9 0.777443-9
19 -0.43209E-8 -0.42482E-8 -0.62369E-9 0.490753-9
20 0.19237E-8 -0.76306E-9 -0.51189E-9 0.30513E-9

r Normal Stress Shear Stress

ozz UDWr OWF arz UBWF OWF

0.0 1.00 0.9985 0.9937 0.00 0.0000 0.0000
0.1 0.98 0.9803 0.9785 0.00 0.0006 0.0012
0.2 0.92 0.9204 0.9188 0.00 0.0001 0.0008
0.3 0.82 0.8206 0.8188 0.00 -0.0003 0.0006
0.4 0.68 0.6807 0.6788 0.00 -0.0005 0.0005
0.5 0.50 0.5008 0.4986 0.00 -0.0006 0.0003
0.6 0.28 0.2809 0.2784 0.00 -0.0006 0.0001
0.7 0.02 0.0208 0.0182 0.00 -0.0006 -0.0002
0.8 -0.28 -0.2798 -0.2820 0.00 -0.0006 -0.0007
0.9 -0.62 -0.6210 -0.6218 0.0) -0.0010 -0.0014
1.0 -1.00 -1.0039 -0.9995 0.00 0.0000 0.0000
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Diorthogonal Weighting optimal Weighting
Functions Functions

N =50 N =50

2 0.69037E-4 -0.2454SE-3 0.702863-4 -0.24505E-3
4 0.74558E-5 0.99827E-6 0.75074E-5 0.10471E-5
6 0.65137E-6 0.51019E-6 0.65842E-6 0.52040E-6
a 0.85310E-7 0.134093-6 0.869783-7 0.13720E-6
10 0.12510E-7 0.40352E-7 0.12961E-7 0.41542E-7
12 0.95515E-9 0.13909E-7 0.11042E-8 0.14440E-7
14 -0.798393-9 0.53280E-8 -0.737103-9 0.559113-8
16 -0.81470E-9 0.220663-9 -0.799793-9 0.23482E-8
18 -0.597963-9 0.96547E-9 -0.595763-9 0.104663-9
20 -0.40622E-9 0.43691E-9 -0.40949E-9 0.48577E-9
22 -0.27090E-9 0.19997E-9 -0.27630Z-9 0.230493-9
24 -0.180753-9 0.996193-10 -0.18693-9 0.10939E-9
26 -0.12143E-9 0.372393-10 -0.12773E-9 0.50267E-9
28 -0.922383-10 0.12297E-10 -0.884663-10 0.209363-10
30 -0.56083E-10 0.74857E-12 -0.62144E-10 0.63731E-11
32 -0.38427E-10 -0.41172E-11 -0.442683-10 -0.706433-12
34 -0.26417E-10 -0.559943-11 -0.31959E-10 -0.39460E-11
36 -0.182983-10 -0.53050E-11 -0.23364E-10 -0.52122E-11
38 -0.13067E-10 -0.41206E-11 -0.17283E-10 -0.54785E-11
40 -0.10321E-10 -0.26105E-11 -0.129563-10 -r,5257BE-11
42 -0.101883-10 -0.16237E-11 -0.97646E-11 -0.48209E-11
44 -0.12881E-10 -0.348653-11 -0.74462E-11 -0.43096Z-11
46 -0.14402E-10 -0.14170E-10 -0.57276E-11 -0.37959E-11
48 0.131793-10 -0.241983-10 -0.44411E-11 -0.33145E-11
50 -0.587783-11 0.53884E-11 -0.34692E-11 -0.287993-11

r Normal Stress Shear Stress

0Y zz DW Or OWs UBWF Owr

0.0 1.00 1.0006 1.0000 0.00 0.0000 0.0000
0.1 0.98 0.9803 0.9800 0.00 0.0000 -0.0001
0.2 0.92 0.9204 0.9201 0.00 -0.0001 0.0001
0.3 0.82 0.8204 0.8200 0.00 -0.0001 -0.0002
0.4 0.68 0.6803 0.6600 0.00 -0.0002 0.0002
0.5 0.50 0.5003 0.5000 0.00 -0.0002 -0.0003
0.6 0.28 0.2802 0.2799 0.00 -0.0003 0.0004
0.7 0.02 0.0202 0.0202 0.00 -0.0003 -0.0005
0.8 -0.29 -0.2800 -0.2803 0.00 -0.0004 0.0005
0.9 -0.62 -0.6203 -0.6195 0.00 -0.0005 -0.0006
1.0 -1.00 -1.0015 -0.9999 0.00 0.0000 0.0000

35_I..



Biorthogonal Weighting Optimal Weighting
Functions Functions

N - 100 N = 100

4 0.749393-5 0.103293-5 0.751613-5 0.10529E-5
8 0.966523-7 0.136453-6 0.07440E-7 0.137923-6
12 0.111473-9 0.143433-7 0.121253-9 0.14593E-7
16 -0.796523-9 0.233183-9 -0.766113-9 0.24035E-8
20 -0.50250E-9 0.49395E-9 -0.396913-9 0.51042E-9
24 -0.18301E-9 0.11034E-9 -0.19125E-9 0.122013-9
29 -0.96235E-10 0.22270R-10 -0.95654E-10 0.29053E-10
32 -0.42922E-10 0.45789E-12 -0.42755E-10 0.360013-11
36 -0.22513E-10 -0.430013-11 -0.225033-10 -0.246013-11
40 -0.123603-10 -0.457033-11 -0.12412E-10 -0.342123-11
44 -0.705103-11 -0.30093E-11 -0.71294E-11 -0.304003-11
49 -0.41496E-11 -0.29431E-11 -0.42400E-11 -0.241093-11
52 -0.24975E-11 -0.222953-11 -0.259603-11 -0.18365E-11
56 -0.15233Z-11 -0.16856E-11 -0.16333E-11 -0.13799R-11
60 -0.92723E-12 -0.128423-11 -0.104963-11 -0.103433-11
64 -0.547593-12 -0.991093-12 -0.687373-12 -0.777913-12
69 -0.292993-12 -0.776203-12 -0.457443-l2 -0.5833E-12
72 -0.10969Z-12 -0.615533-12 -0.30857E-12 -0.449193-12
76 0.399323-13 -0.497693-12 -0.21049E-12 -0.34406E-12
s0 0.177193-12 -0.36936E-12 -0.144963-12 -0.26617E-12
94 0.31717Z-12 -0.223913-12 -0.10039E-12 -0.20750E-12
99 0.439203-12 0.221783-12 -0.69965E-13 -0.16297E-12
92 0.323718-12 0.472583-12 -0.497093-13 -0.12903-12
96 -0.79584E-12 0.275663-12 -0.33916E-13 -0.102653-12

100 -0.773003-13 0.150963-12 -0.235003-13 -0.82266Z-13

r Normal stress Shear Stress

,a0 UVF OW? ar UDVF OW?

0.0 1.00 1.0027 0.9997 0.00 0.0000 0.0000
0.1 0.99 0.9904 0.9900 0.00 -0.0003 0.0000
0.2 0.92 0.9204 0.9200 0.00 -0.0002 0.0000
0.3 0.82 0.8204 0.9199 0.00 -0.0002 0.0000
0.4 0.69 0.6803 0.6799 0.00 -0.0002 0.0000
0.5 0.50 0.5003 b~.4999 0.00 -0.0002 0.0000
0.6 0.29 0.2903 0.2799 0.00 -0.0002 0.0001
0.7 0.02 0.0203 0.0199 0.00 -0.0003 0.0001
0.8 -0.29 -0.2799 -0.2801 0.00 -0.0003 0.0002
0.9 -0.62 -0.6200 -0.6201 0.00 -0.0002 0.0002
1.0 -1.00 -1.0006 -1.0000 0.00 0.0000 0.0000
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Convergence to a = 01 Or = r

NOTE

The partial sums for this stress distribution are not
convergent, and the sums shown below are Cesaro sum,
I.e.

If S is the nth partial sum, then C Ua n~ E Si1

Biorthogonal Weighting Optimal Weighting
Functions Functions

n N =5 N= 5

1 -0.20644E-0 0.67713E-2 0.27844Z-1 -0.64030E-2
2 -0.68485E-2 -0.14244E-9 0.63268E-3 0.82867E-3
3 -0.13217E-2 -O.71058E-3 0.51659K-4 0.16962E-3
4 -0.34379E-3 -0.44117E-3 0.39435E-5 0.523815-4
5 0.20885E-3 -0.51413E-5 -0.18870Z-5 0.20690E-4

r Normal Stress Shear Stress

0 z BF w 0arz UlswT Owr

0.0 0.00 3.8987 0.2517 0.00 0.0000 0.0000
0.1 0.00 2.9468 0.1779 0.10 0.6512 0.0356
0.2 0.00 1.5725 0.0983 0.20 0.2314 0.1574
0.3 0.00 1.5576 0.1361 0.30 -0.7526 0.3124
0.4 0.00 2.1319 0.1394 0.40 -1.0633 0.3889
0.5 0.00 1.9386 0.0377 0.50 -0.6903 0.4027
0.6 0.00 1.3380 0.0267 0.60 -0.7799 0.4998
0.7 0.00 1.1321 0.0766 0.70 -1.5204 0.6656
0.9 0.00 0.7944 -0.1215 0.90 -1.5147 0.7029
0.9 0.00 -1.8012 -0.2834 0.90 -0.2523 0.4090
1.0 0.00 -8.6863 0.4987 1.00 0.0000 0.0000
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Siorthogonal Weighting Optimal Weighting

Functions Functions

N a 10 N = 10

1 -0.31706E-1 0.26662E-1 0.29602K-i -0.72516E-2

2 -0.23732E-2 -0.20218E-3 0.77091E-3 0.85079E-3

3 -0.40096E-3 -0.16414E-3 0.825723-4 0.18016E-3

4 -0.10276E-3 -0.68799E-4 0.14477E-4 0.57098E-4

5 -0.31990E-4 -0.31147E-4 0.26161E-5 0.230423-4

6 -0.99216E-5 -0.15341E-4 0.25682E-7 0.10861E-4

7 -0.15152E-5 -0.76746E-5 -0.52883E-6 0.57046E-5

8 0.21502E-5 -0.28967E-5 -0.57641K-6 0.32459E-5

9 0.27344E-5 0.118299-5 -0.501903-6 0.19643E-5

10 -0.51185E-6 0.190503-6 -0.41006E-6 0.12487E-5

r Normal Stress Shear Stress

ozz UBW' OWr Or z  UBVF OWF

0.0 0.00 1.1891 0.0428 0.00 0.0000 0.0000

0.1 0.00 1.0300 0.1108 0.10 0.0311 0.1071

0.2 0.00 1.0541 0.0699 0.20 -0.0559 0.1745

0.3 0.00 0.9870 0.0946 0.30 -0.0084 0.2875

0.4 0.00 0.9331- 0.0539 0.40 -0.0862 0.3565

0.5 0.00 0.8375 0.0659 0.50 -0.0698 0.4673

0.6 0.00 0.6878 0.0282 0.60 -0.1509 0.5248

0.7 0.00 0.4734 0.0087 0.70 -0.1756 0.6414

0.9 0.00 0.1128 0.0003 0.80 -0.2722 0.6588

0.9 0.00 -0.7781 -0.1916 0.90 -0.0649 0.7860

1.0 0.00 -3.8650 0.5033 1.00 0.0000 0.0000
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Diorthogoflal Weighting optimal Weighting
Functions Functions

N =20 N =20

1 -O.11429E-l 0.156453-1 0.31084E-2 -0.793093-2

2 -0.12832E-2 0.14983E-3 0.993753-3 0.874953-3

3 -0.223993-3 -0.44775E-4 0.10765E-3 0.190643-3

4 -O.5768SE-4 -0.232683-4 0.230923-4 0.61745E-4

5 -0.18352E-4 -0.10654E-4 0.63527E-5 0.25371E-4

6 -0.64103E-5 -0.504963-5 0.190963-5 0.121493-4

7 -0.215093-5 -0.247623-5 0.522313-6 0.647153-5

a -0.46193E-6 -0.121703-5 0.559493-7 0.37300E-5

9 0.25341E-6 -0.555593-6 -0.9917SE-7 0.22045E-5

10 0.56504E-6 -0.179133-6 -0.141933-6 0.146653-5

11 0.696553-6 0.599453P-6 -0.143193-6 0.991663-6

12 0.74017E-6 0.232293P-6 -0.13029E-6 0.679363-6

13 0.731433-6 0.392042-6 -0.113693-6 0.491953-6

14 0.675193-6 0.53240E-6 -0.9739E-7 0.350493-6

15 0.55031E-6 0.69484E-6 -0.928213-7 0.260233-6

16 0.301603-6 0.954773-6 -0.703043-7 0.1967M3-6

17 -0.169293-6 0.913113-6 -0.59745E-7 0.151113-6

18 -0.909393-6 0.510238-6 -0.50911E-7 0.117723-6

19 -0.112473-5 -0.101653-5 -0.435403-7 0.92877Z-7

20 0.48445E-6 -0.184728-6 -0.373893-7 0.741193-7

r Normal Stress Shear Stress

a UDW?~v Owr a rx UBWF OW

0.0 0.00 -0.0399 0.0326 0.00 0.0000 0.0000

0.1 0.00 0.6073 0.0500 0.10 0.2237 0.0883

0.2 0.00 0.6601 0.0497 0.20 0.2075 0.1930

0.3 0.00 0.6704 0.0453 0.30 0.2054 0.2760

0.4 0.00 0.6528 0.0403 0.40 0.2007 0.3677

0.5 0.00 0.6036 0.0340 0.50 0.1868 0.4577

0.6 0.00 0.5096 0.0262 0.60 0.1604 0.5452

0.7 0.00 0.3392 0.0170 0.70 0.1226 0.6291

0.8 0.00 0.0342 0.0053 0.90 0.0993 0.7049

0.9 0.00 -0.5290 -0.0089 0.90 0.1204 0.7490

1.0 0.00 -2.4519 0.5069 1.00 0.0000 0.0000
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Diorthogonal Weighting Optimal Veighting
Functions Functions

N 50 N 50

2 -0.225273-3 0.490612-3 0.999253-3 0.90250E-3
4 -0.13663E-4 0.197193-4 0.316563-4 0.66934E-4
6 -0.12284E-5 0.424493-5 0.377543-5 0.13609E-4
8 0.16323E-7 0.161763-5 0.689483-6 0.42925E-5
10 0.15705E-6 0.788273-6 0.13239E-6 0.17304E-5
12 0.14700E-6 0.441613-6 0.80056E-8 0.816763-6
14 0.11961E-6 0.27163-6 -0.19961E-7 0.43045E-6
16 0.95898E-7 0.179713-6 -0.235383-7 0.24612E-6
18 0.779363-7 0.12595E-6 -0.20995E-7 0.14904E-6
20 0.64636E-7 0.929073-7 -0.173683-7 0.958683-7
22 0.547093-7 0.71878E-7 -0.140293-7 0.639003-7
24 0.471312-7 0.58 2403-7 -0.112743-7 0.44040E-7
26 0.41151E-7 0.49425E-7 -0.908293-8 0.31226E-7
28 0.361903-7 0.439493-7 -0.73614E-8 0.226843-7
30 0.317533-7 0.409483-7 -0.601033-8 0.169283-7
32 0.273383-7 0.39922E-7 -0.49457E-8 0.127153-7
34 0.223193-7 0.40575E-7 -0.410153-8 0.97631C-8
36 0.157783-7 0.426603-7 -0.34273E-8 0.760503-8
38 0.621693-8 0.45703E-7 -0.288463-8 0.600043-8
40 -0.889363-8 0.482553-7 -0.244443-8 0.478933-8
42 -0.334683-7 0.456953-7 -0.208463-8 0.38628-8
44 -0.702573-7 0.23722E-7 -0.17885E-8 0.314523-8
46 -0.95703E-7 -0.52967E-7 -0.154313-8 0.25832E-8
48 0.505183-7 -0.13265E-6 -0.133843-8 0.213853-8
50 -0.272653-7 0.258843-7 -0.116653-6 0.178343-8

r Normal stress Shear Stress

a zzrz UBWF OW ax sv w

0.0 0.00 2.0988 0.0225 0.00 0.0000 0.0000
0.1 0.00 0.2693 0,0344 0.10 0.3377 0.0965
0.2 0.00 0.4966 0.0300 0.20 -0.1055 0.1888
0.3 0.00 0.4078 0.0321 0.30 0.3475 0.2857
0.4 0.00 0.3452 0.0267 0.40 0.0844 0.3774
0.5 0.00 0.4060 0.0274 0.50 0.3509 0.4733
0.6 0.00 0.2145 0.0208 0.60 0.2812 0.5625
0.7 0.00 0.2317 0.0165 0.70 0.3425 0.6595
0.8 0.00 0.0154 0.0089 0.80 0.4142 0.7390
0.9 0.00 -0.2509 -0.0397 0.30 0.4407 0.6420
1.0 0.00 -0.8829 0.5031 1.00 0.0000 0.0000
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Diorthogonal weighting optimal weighting

Functions Functions

x = 100 N = 100

4 0.952399-4 0.11908E-3 0.36441E-4 0.69952E-4

8 0.370148-5 0.83793E-5 0.10350R-5 0.46246E-5

12 0.526963-6 0.16646E-5 0.83162Z-7 0.900433-6

16 0.133849-6 0.520823-6 0.21734E-43 0.27684-6

20 0.47464E-7 0.21090E-6 -0.61255E-8 0.109835-6

24 0.211798-7 0.10102E-6 -0.554602-9 0.51300E-7

28 0.11166E-7 0.54545E-7 -0.412313-6 0.26839E-7

32 0.665743-8 0.322763-7 -0.97182-8 0.152653-7

36 0.43386E-B 0.205723-7 -0.215 363-8 0.925623-8

40 0.30025E-8 0.139739-7 -O.15854E-G 0.590493-9

44 0.21476E-8 0.10047E-7 -0.180z-8 0.39253E-8

48 0,15405E-8 0.7616SE-S -0.90606E-9 0.269993-8

52 0.10587Z-B 0.607099-S -0.702463-9 0.191118-8

56 0.62831Z-9 0.507533-8 -O.S5S52E-9 0.136633-S

60 0.1947S2- 9 0.443573-8 -0.44107- 9 0.102723-8

64 -0.293488-9 0.403103-8 -0.35626E-9 0.775253-9

68 -0.897649-9 0.377389-6 -0.290973-9 0.594723-9

72 -0.17021K-8 0.35772E-9 -0.240073-9 0.462873-9

76 -0.282979-8 0.330773-8 -0,199e9-9 0.36493Z-9

50 -0.4440E-8 0.268443-8 -0167643-9 0.291073-9

84 -0.66801E-8 0.10234K-S -0•14201-9 0.234623-9

88 -0.09139E-8 -0.33647-g 
-0.12100 -9 0.190923L-9

92 -0,56161-6 -0.13141E-7 
-0.103773-9 O.156723-9

96 0.234519-7 -0.535478-9 
-0.9527E-10 0.129683-9

100 0,24496E-S -0.46556E-8 
-0.77664- 10 0.108103-9

Normal Stress 
shear Stress

rz
z  

Urs O

0.0 0.00 -3.2079 0.0273 0.00 0.0000 0.0000

0.1 0.00 -0.4719 0.0226 0.10 0.4175 0.0967

0.2 0.00 -0.3235 0.0222 0.20 0.4856 0.1926

0.3 0.00 -0.2290 0.0216 0.30 0.5616 0.2884

0.4 0.00 -0.1588 0.0208 0.40 0.6277 0.36394

0.5 0.00 -0.1109 0.0198 0.0 0.6841 0.4790

0.6 0.00 -0.0681 0.0184 0.60 0.7432 0.5734

0.7 0.00 -0.0908 0.0160 0.70 0.6352 0.6667

0.8 0.00 -0.0272 0.0113 0.60 1.0034 0.7579

0.9 0.00 0.2336 -0.0020 0.90 1.1914 0.9412

1.0 0.00 2.7601 0.5116 1.00 0.0000 0.0000
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APPENDIX 9

Graphical Results

The following are a selection of results obtained for the six

special cases discussed in section 5, all obtained by using

optimal Weighting Functions and truncating the infinite matrix

using 100 eigenvalues.

Perhaps the most striking feature is the improvement in

convergence when Cesaro sums are used rather than partial sums in

those cases where the coefficients decay too slowly for the

expansions to convergence normally. As with ordinary Fourier

series these discontinuous cases show Gibbs phenomena in the

neighbourhood of the jumps, as pointed out by Joseph and

Sturges [1978) for the semi-infinite strip.

"
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APPENDIX F

Notes on the C mutations

All the computations discussed In this report were carried

out on the Oxford University Engineering Science department's VAX

11/780 machine.

The programmes to calculate the eigenvalues and all the

Bessel functions required for suw ming expansions were calculated

using a slightly modified version of the BRL Bessel function

subroutine. The programme was rewritten In DOUBLE COMPLEX

(COMPLEX'16) arithmetic, and was simplified slightly so that only

the Bessel functions 3 (z) and r (z) would be calculated for each6 i

call to the subroutine. The eigenvalues could be calculated for

any value of Poisson's ratio V, but all the results in this report

have used the value v u 0.3. The eLgenvaluos, their Bessel

functions J (X) and J (, ), and Bessel functions of the form

e  
r ) for various Intermediate values of re[O,l], were

calculated In advance and stored on disk.

The cylinder eigenvalues were calculated using a simple

, Newton Iteration technique which was found to produce satisfactory

convergence to values which agreed to virtually full double

precision with those calculated at DUL. The programme for

calculating the coefficients for the non-canonical stress problem

was built around the NAG library routine F04ADF which solves

complex systems of linear equations (with multiple right-hand

sides If required) using the Crout factorisation method. The

subroutines to set up the Infinite matrix and the right-hand sides

- 53-
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were coded to test both unmodified biorthogonal weighting

functions and optimal weighting functions. The matrix warn checked

for diagonal dominance and the equations were inverted. Having

obtained the coefficients, the run could be terminated if desired.

Otherwise the sigenfunction expansions could be summed either for

a few points In the range (0,1) to test the convergence to the

prescribed data or over a large number of points for various

numbers of terms and for increasing values of z for use in a

graphics program.

4

I
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